

Tetrahedron: Asymmetry 9 (1998) 3939-3943

Branched-chain functionalised carbohydrates via β-functionalised organolithium compounds

Tatiana Soler,^a Abderrazak Bachki,^a Larry R. Falvello,^{b,†} Francisco Foubelo ^a and Miguel Yus ^{a,*}

^aDepartamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain ^bDepartamento de Química Inorgánica, Instituto de Ciencia de los Materiales de Aragón, Facultad de Ciencias, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain

Received 22 September 1998; accepted 9 October 1998

Abstract

The reaction of the epoxysugar 1 with an excess of lithium powder and a catalytic amount of DTBB (5 mol%) in THF at -78° C leads to the formation of the corresponding β -oxido functionalised organolithium intermediates 2, which by treatment with different electrophiles [H₂O, D₂O, Me₃SiCl, PhCHO, Me₂CO, (CH₂)₅CO] at -78° C to room temperature afford, after hydrolysis with water, the expected enantiomerically pure compounds 3. Starting from the epimeric epoxide 4 and following the same procedure, using water as electrophile, the compound 6 was isolated, the corresponding intermediate 5 having been involved in the process. © 1998 Elsevier Science Ltd. All rights reserved.

From a biological point of view, carbohydrates play a vital role in molecular recognition, cell signalling, biomolecular transport, the immune system and, in fact, in virtually every essential biological process. From a chemical point of view, carbohydrates have long been utilised as useful starting materials in the synthesis of chiral natural products, D-glucose being probably the starting material most extensively used; this is an example of the so called EPC-synthesis, which allows the preparation of enantiomerically pure compounds using the pool of easily available chiral natural compounds. One important family of sugar derivatives are the corresponding branched-chain functionalised carbohydrates, which are glycosidic components of antibiotics. In nature, most of the branched-chain sugars contain a polar substituent at the branching carbon atom, the alcohol functionality being the most commonly found. On the other hand, in the last few years we have applied an arene-catalysed lithiation to the preparation of functionalised organolithium compounds starting from different materials, such as chlorinated compounds, ethers or thioethers, sulfones using lithium and a stoichiometric contains this last type of compound, the reductive opening of epoxides using lithium and a stoichiometric or catalytic.

^{*} Corresponding author, E-mail: vus@ua.es

[†] To whom the correspondence on X-ray structure should be addressed.

amount of an arene is a useful methodology, which allows the generation of β-oxido functionalised organolithium intermediates. In this paper we apply the aforementioned arene-catalysed lithiation to the ring opening of epoxides derived from D-glucose in order to prepare branched-chain functionalised carbohydrate derivatives.⁴

The reaction of the protected epoxy D-glucose 1¹⁵ with an excess of lithium powder (1:14 molar ratio) and a catalytic amount of 4,4'-di-*tert*-butylbiphenyl (DTBB; 1:0.1 molar ratio, 5 mol%) in THF at -78°C for 2 h followed by treatment with different electrophiles [E⁺=H₂O, D₂O, Me₃SiCl, PhCHO, Me₂CO, (CH₂)₅CO] at temperatures ranging between -78°C and room temperature led, after hydrolysis with water, to the expected products 3a-f, the corresponding intermediate 2 being probably involved in the process (Scheme 1 and Table 1).

Scheme 1. Reagents and conditions: i, Li, DTBB (5%), THF, -78°C, 2 h; ii, E⁺=H₂O, D₂O, Me₃SiCl, PhCHO, Me₂CO, (CH₂)₅CO, -78 to 20°C; iii, H₂O

In the case of prochiral carbonyl compounds, such as benzaldehyde, a 2:3 diastereoisomeric mixture was obtained (Table 1, entry 4), which was separated by column chromatography (silica gel, hexane/ethyl acetate) giving the corresponding pure diastereoisomers, one of them (the most polar one) was recrys-

Table 1
Preparation of compounds 3 from the epoxide 1

Entry	Electrophile E+	Product ^a				
		No.	E	Yield (%)b	Rfc	[α] _D RT (c)d
1	H₂O	3a	н	95	0.31	21.1 (0.72)
2	D ₂ O	3b	D	95∘	0.31	22.9 (1.25)
3	Me ₃ SiCl	3 c	Me ₃ Si	50 (70)	0.27	27.8 (1.18)
4	PhCHO	3d	РЬСНОН	50f (65)	0.29	33.3 (1.11)
					0.24g	19.5 (1.12)
5	Me ₂ CO	3e	Me ₂ COH	20 (55)	0.27	27.8 (1.50)
6	(CH ₂) ₅ CO	3f	(CH ₂) ₅ COH	60	0.34h	30.1 (1.79)

^a All products 3 were pure (>95% from GLC and 300 MHz ¹H NMR) and were fully characterised by spectroscopic means (IR, ¹H and ¹³C NMR and MS). ^b Isolated yield after column chromatography (neutral silica gel, hexane/ethyl acetate) based on the starting material 1; in parenthesis GLC yield. ^c Silica gel, hexane/ethyl acetate: 4/1. ^d In CH₂Cl₂; in parenthesis concentration given in g/100 ml. ^c 75% Deuterium incorporation (from MS). ^f 2/3 Diastereoisomeric mixture (75 MHz ¹³C NMR). ^g Mp 94-5°C (CH₂Cl₂/pentane); the stereochemistry of this compound was confirmed by X-ray analysis (see text). ^h Mp 108-9°C (CH₂Cl₂/pentane).

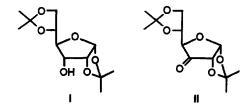
Figure 1.

tallised and analysed by X-ray difraction, confirming the stereochemistry at both formed stereocentres (Fig. 1).¹⁶

When the epimeric epoxide 4¹⁷ was submitted to the same procedure as shown in Scheme 1, and using water as electrophile, the expected 'reduced' product 6¹⁸ was obtained, consistent with the intermediate 5 being involved in the process (Scheme 2).

Scheme 2. Reagents and conditions: i, ii as in Scheme 1 with E+=H2O

Just to confirm the stereochemistry of the new stereocentre in 6 we performed the addition of methyllithium to the ketone II^{15} in THF at temperatures ranging between -78° C and room temperature, thus generating the same compound $6.^{19,20}$


From the results reported here we conclude that the epoxysugars 1 and 4 are convenient precursors for the generation of enantio- and regiochemically pure β -functionalised organolithium compounds, which are versatile intermediates for the preparation of branched-chain functionalised sugars. We are now studying the synthetic scope of this reaction using different sugar derivatives. Note that the use of oxosugars, such as compound \mathbf{H}^{15} as an electrophilic component, opens the door for obtaining dimeric structures having two monosaccharide units (disaccharide type molecules).

Acknowledgements

This project was financially supported by the DGICYT from the Spanish Ministerio de Educación y Cultura (MEC; project nos. PB94-1514 and PB95-0792). T.S. thanks the Generalitat Valenciana for a predoctoral fellowship.

References

- 1. See, for instance: Borman S. Chem. Eng. News 1998, 76, July 20, 49.
- See, for instance: (a) Hanessian, S. Total Synthesis of Natural Products: The Chiron Approach; Pergamon Press: Oxford, 1983. (b) Lichtenthaler, F. In Modern Synthetic Methods 1992; Scheffold, R., Ed.; VCA Publishers: New York, 1992; p. 273. (c) Bols, M. Carbohydrate Building Blocks; John Wiley & Sons: New York, 1996.
- 3. Seebach, D.; Hungerbühler, E. In *Modern Synthetic Methods 1980*; Scheffold, R., Ed.; Salle+Sauerländer-Verlag: Aarau, 1980; p. 91.
- 4. Sato, K.; Suzuki, K.; Ueda, M.; Katayama, M.; Kajihara, Y. Chem. Lett. 1991, 1469.
- 5. (a) For the first account of this reaction, see: Yus, M.; Ramón, D. J. J. Chem. Soc., Chem. Commun. 1991, 398. (b) For a review, see: Yus, M. Chem. Soc. Rev. 1996, 155.
- (a) Nájera, C.; Yus, M. Trends Org. Chem. 1991, 2, 155.
 (b) Nájera, C.; Yus, M. Recent Res. Devel. Org. Chem. 1997, 1, 67.
- 7. Last paper on this topic from our laboratory: Alonso, F.; Lorenzo, E.; Yus, M. Tetrahedron Lett. 1998, 39, 3303.
- 8. Last paper on this topic from our laboratory: Bachki, A.; Foubelo, F.; Yus, M. Tetrahedron Lett. 1998, 39, 7759.
- 9. Last paper on this topic from our laboratory: Foubelo, F.; Gutierrez, A.; Yus, M. Tetrahedron Lett. 1997, 38, 4837.
- Last paper on this topic from our laboratory: Alonso, D. A.; Alonso, E.; Nájera, C.; Ramón, D. J.; Yus, M. Tetrahedron 1997, 53, 4835.
- 11. Last paper on this topic from our laboratory: Almena, J.; Foubelo, F.; Yus, M. Tetrahedron 1997, 53, 5563.
- 12. For a review, see: Yus, M.; Foubelo, F. Rev. Heteroatom. Chem. 1997, 17, 73.
- (a) Bartman, E. Angew. Chem., Int. Ed. Engl. 1986, 25, 653. (b) Barluenga, J.; Fernández-Simón, J. L.; Concellón, J. M.; Yus, M. J. Chem. Soc., Chem. Commun. 1987, 915. (c) Barluenga, J.; Fernández-Simón, J. L.; Concellón, J. M.; Yus, M. J. Chem. Soc., Perkin Trans. J 1988, 3339. (d) Dorigo, A. E.; Houk, K. N.; Cohen, T. J. Am. Chem. Soc. 1989, 111, 8976. (e) Cohen, T.; Jeong, I.-H.; Mudryk, B.; Bhupathy, M.; Awad, M. M. A. J. Org. Chem. 1990, 55, 1528. (f) Conrow, R. E. Tetrahedron Lett. 1993, 34, 5553.
- 14. (a) Bachki, A.; Foubelo, F.; Yus, M. Tetrahedron: Asymmetry 1995, 6, 1907. (b) Bachki, A.; Foubelo, F.; Yus, M. Tetrahedron: Asymmetry 1996, 7, 2997.
- 15. Compound 1 was prepared from 1,2;5,6-di-O-isopropylidene-α-D-glucofuranos-3-ulosa (II) [prepared by oxidation of the corresponding commercially available alcohol I with PCC in a mixture of acetic anhydride and CH₂Cl₂ at room temperature for 30 min: 73%; R_f 0.31 (silica gel, hexane/ethyl acetate: 4/1); [α]_D^{RT} 131.5 (CH₂Cl₂; c 1.27)] by treatment with equimolecular amounts of potassium *tert*-butoxide and trimethylsulfoxonium iodide in *tert*-butanol at 50°C for 2.5 h, followed by hydrolysis with water: 82%; R_f 0.48 (silica gel, hexane/ethyl acetate: 4/1); [α]_D^{RT} 55.4 (CH₂Cl₂; c 1.08).

16. (a) Crystal data (to be deposited at the Cambridge Crystallographic Data Centre): C₂₀H₂₈O₇, M=380.42; monoclinic, a=14.5447(13), b=6.6448(10), c=21.591(3) Å, β=91.129(9); U=2086.3(5) Å; space group P2₁; Z=4; D_c=1.211 Mg m⁻³; λ=0.71073 Å; μ=0.091 mm⁻¹; F(000)=816; T=24-25±1°C. Intensity data were measured on a CAD-4 diffractometer. The data were reduced by routine methods. ^{16b} The structure was solved by direct methods for and refined to all 3037 unique F₀² by full matrix least squares. ^{16d} Most of the hydrogen atoms were seen in difference Fourier maps, but for the final refinement all H atoms were placed at idealised positions and refined as rigid atoms, with the exception of

the OH and the methyl group hydrogens, which were located in Fourier calculations; these groups were refined as rigid rotators. Final wR2=0.1440 for all data and 499 parameters; R1=0.0547 for 2366 $F_0>4\alpha(F_0)$. The enantiomorph was fixed according to the known stereochemistry of four of the chiral centres in the molecule. (b) Data were processed on an AlphaStation 200 4/166 (OpenVMS Alpha V6.2), using the program XCAD4B (K. Harms, University of Marburg) and the commercial package SHELXTL-PLUS Release 5.05/V. © 1996 Siemens Analytical X-Ray Instruments, Inc., Madison, WI. (c) SHELXS-97: Fortran program for crystal structure solution. © 1997 G. M. Sheldrick. (d) SHELXL-97: Fortran program for crystal structure solution. © 1997 G. M. Sheldrick.

- 17. Compound 4 was prepared from ketone II15 by reaction with chloroiodomethane (1:2 molar ratio) and lithium bromide in THF at -78° C for 10 min, followed by treatment with *n*-butyllithium at -78° C to room temperature: ca. 30% overall yield; $R_{\rm f}$ 0.15 (silica gel, hexane/ethyl acetate: 4/1); $[\alpha]_{\rm D}^{\rm RT}$ 85.6 (CH₂Cl₂; c 1.2). 18. >95%; $R_{\rm f}$ 0.13 (silica gel, hexane/ethyl acetate: 4/1); $[\alpha]_{\rm D}^{\rm RT}$ 23.7 (CH₂Cl₂; c 1.26).
- 19. 48%; R_1 0.11 (silica gel, hexane/ethyl acetate: 4/1); $[\alpha]_D^{RT}$ 25.8 (CH₂Cl₂; c 1.10).
- 20. In the literature has been reported that nucleophilic addition to the C-3 carbonyl group of II15 takes place to the convex β-position by the preferential control due to the rigid bicyclic structure. See, for instance: (a) Peterson, M. A.; Mitchell, J. R. J. Org. Chem. 1997, 62, 8237. (b) Yamauchi, N.; Kishida, M.; Sawada, K.; Ohashi, Y.; Eguchi, T.; Kakinura, K. Chem. Lett. 1998, 475. (c) See also Ref. 4.